极光城

Linux进程管理-进程状态和时钟滴答

Linux进程管理 进程状态和时钟滴答[哈工大操作系统实验] On Linux Process Status

Full Article

进程管理和创建记录,是哈工大操作系统实验的内容。 涉及的技术内容包括“进程状态转换点定位”和“内核状态下写文件”。

 

本文主要讲解linux 0.11 系统[进程的调度转换知识],并给出哈工大实验自带的[内核文件读写代码]。

先讲简单的,内核文件读写:

一,搞定文件读写。

内核状态下的文件读写主要靠filp_open() ; filp_clos() ; vfs_read() ; vfs_write(),但是linux0.11的时候,这些东西还没出生呢,内核下只有个printk(String format , vars …)来打印到屏幕,用法和printf()一样;

还好,工大给出了在内核态打印到文件的代码。这是一个添加到kernel/printk.c的外加系统调用,其实就是一个printk()函数的加强版本,你只需要用之前学过的添加系统调用的手法,在printk.c作如下的改动:

/*
 *  linux/kernel/printk.c
 *
 *  (C) 1991  Linus Torvalds
 */
 
/*
 * When in kernel-mode, we cannot use printf, as fs is liable to
 * point to 'interesting' things. Make a printf with fs-saving, and
 * all is well.
 */
#include <stdarg.h>
#include <stddef.h>
 
#include <linux/kernel.h>
#include <linux/sched.h>
#include <sys/stat.h>
static char buf[1024];
 
extern int vsprintf(char * buf, const char * fmt, va_list args);
 
int printk(const char *fmt, ...)
{
    va_list args;
    int i;
 
    va_start(args, fmt);
    i=vsprintf(buf,fmt,args);
    va_end(args);
    __asm__("push %%fs\n\t"
        "push %%ds\n\t"
        "pop %%fs\n\t"
        "pushl %0\n\t"
        "pushl $buf\n\t"
        "pushl $0\n\t"
        "call tty_write\n\t"
        "addl $8,%%esp\n\t"
        "popl %0\n\t"
        "pop %%fs"
        ::"r" (i):"ax","cx","dx");
    return i;
}
static char logbuf[1024];
int fprintk(int fd, const char *fmt, ...)
{
    va_list args;
    int count;
    struct file * file;
    struct m_inode * inode;
 
    va_start(args, fmt);
    count=vsprintf(logbuf, fmt, args);
    va_end(args);
 
    if (fd < 3) /* 如果输出到stdout或stderr,直接调用sys_write即可 */
    {
        __asm__("push %%fs\n\t"
            "push %%ds\n\t"
            "pop %%fs\n\t"
            "pushl %0\n\t"
            "pushl $logbuf\n\t" /* 注意对于Windows环境来说,是_logbuf,下同 */
            "pushl %1\n\t"
            "call sys_write\n\t" /* 注意对于Windows环境来说,是_sys_write,下同 */
            "addl $8,%%esp\n\t"
            "popl %0\n\t"
            "pop %%fs"
            ::"r" (count),"r" (fd):"ax","cx","dx");
    }
    else    /* 假定>=3的描述符都与文件关联。事实上,还存在很多其它情况,这里并没有考虑。*/
    {
        if (!(file=task[0]->filp[fd]))  /* 从进程0的文件描述符表中得到文件句柄 */
            return 0;
        inode=file->f_inode;
 
        __asm__("push %%fs\n\t"
            "push %%ds\n\t"
            "pop %%fs\n\t"
            "pushl %0\n\t"
            "pushl $logbuf\n\t"
            "pushl %1\n\t"
            "pushl %2\n\t"
            "call file_write\n\t"
            "addl $12,%%esp\n\t"
            "popl %0\n\t"
            "pop %%fs"
            ::"r" (count),"r" (file),"r" (inode):"ax","cx","dx");
    }
    return count;
}

然后相应修改unistd.h , system_call.s sys.h 就搞定了这个函数,向文件中写东西的语句如下:

fprintk(3,"%d",a);

二,理清思路

我们要做的事情总的来说就是两步:

1,找到进程小朋友们在哪里转换状态。

2,在转换状态的地方记录这次变化到文件。(直接调用fprintk就能自动生成process.log并按格式写入);

问题2其实已经解决了,就剩下1了,这里有一些知识需要了解:

一个进程的状态有如下几种宏:

TASK_RUNNING(准备好随时运行或正在运行)

TASK_INTERRUPTIBLE(进入睡眠,可以打断其 “进入睡眠” 直接改状态)

TASK_UNINTERRUPTIBLE(进入不可中断睡眠,完全进入睡眠后方可正式唤醒)

TASK_ZOMBIE(僵死状态,进程同学一路走好)

不同时间进入这三种状态,会产生一些教授们定义出来的状态:New /Ready /Running /Wait /Exit

三,开始找状态点:

1,fork.c  包含状态:new,ready

/*
 *  linux/kernel/fork.c
 *
 *  (C) 1991  Linus Torvalds
 */
 
/*
 *  'fork.c' contains the help-routines for the 'fork' system call
 * (see also system_call.s), and some misc functions ('verify_area').
 * Fork is rather simple, once you get the hang of it, but the memory
 * management can be a bitch. See 'mm/mm.c': 'copy_page_tables()'
 */
#include <errno.h>
 
#include <linux/sched.h>
#include <linux/kernel.h>
#include <asm/segment.h>
#include <asm/system.h>
#include <linux/fs.h>
#ifndef timep
#define timep jiffies
#endif
extern void write_verify(unsigned long address);
 
long last_pid=0;
 
void verify_area(void * addr,int size)
{
    unsigned long start;
 
    start = (unsigned long) addr;
    size += start & 0xfff;
    start &= 0xfffff000;
    start += get_base(current->ldt[2]);
    while (size>0) {
        size -= 4096;
        write_verify(start);
        start += 4096;
    }
}
 
int copy_mem(int nr,struct task_struct * p)
{
    unsigned long old_data_base,new_data_base,data_limit;
    unsigned long old_code_base,new_code_base,code_limit;
 
    code_limit=get_limit(0x0f);
    data_limit=get_limit(0x17);
    old_code_base = get_base(current->ldt[1]);
    old_data_base = get_base(current->ldt[2]);
    if (old_data_base != old_code_base)
        panic("We don't support separate I&D");
    if (data_limit < code_limit)
        panic("Bad data_limit");
    new_data_base = new_code_base = nr * 0x4000000;
    p->start_code = new_code_base;
    set_base(p->ldt[1],new_code_base);
    set_base(p->ldt[2],new_data_base);
    if (copy_page_tables(old_data_base,new_data_base,data_limit)) {
        printk("free_page_tables: from copy_mem\n");
        free_page_tables(new_data_base,data_limit);
        return -ENOMEM;
    }
    return 0;
}
 
/*
 *  Ok, this is the main fork-routine. It copies the system process
 * information (task[nr]) and sets up the necessary registers. It
 * also copies the data segment in it's entirety.
 */
int copy_process(int nr,long ebp,long edi,long esi,long gs,long none,
        long ebx,long ecx,long edx,
        long fs,long es,long ds,
        long eip,long cs,long eflags,long esp,long ss)
{
    struct task_struct *p;
    int i;
    struct file *f;
 
    p = (struct task_struct *) get_free_page();
    if (!p)
        return -EAGAIN;
    task[nr] = p;
    *p = *current;  /* NOTE! this doesn't copy the supervisor stack */
    p->state = TASK_UNINTERRUPTIBLE;
    p->pid = last_pid;
    p->father = current->pid;
    p->counter = p->priority;
    p->signal = 0;
    p->alarm = 0;
    p->leader = 0;      /* process leadership doesn't inherit */
    p->utime = p->stime = 0;
    p->cutime = p->cstime = 0;
    p->start_time = jiffies;
    p->tss.back_link = 0;
    p->tss.esp0 = PAGE_SIZE + (long) p;
    p->tss.ss0 = 0x10;
    p->tss.eip = eip;
    p->tss.eflags = eflags;
    p->tss.eax = 0;
    p->tss.ecx = ecx;
    p->tss.edx = edx;
    p->tss.ebx = ebx;
    p->tss.esp = esp;
    p->tss.ebp = ebp;
    p->tss.esi = esi;
    p->tss.edi = edi;
    p->tss.es = es & 0xffff;
    p->tss.cs = cs & 0xffff;
    p->tss.ss = ss & 0xffff;
    p->tss.ds = ds & 0xffff;
    p->tss.fs = fs & 0xffff;
    p->tss.gs = gs & 0xffff;
    p->tss.ldt = _LDT(nr);
    p->tss.trace_bitmap = 0x80000000;
    if (last_task_used_math == current)
        __asm__("clts ; fnsave %0"::"m" (p->tss.i387));
    if (copy_mem(nr,p)) {
        task[nr] = NULL;
        free_page((long) p);
        return -EAGAIN;
    }
    for (i=0; i<NR_OPEN;i++)
        if ((f=p->filp[i]))
            f->f_count++;
    if (current->pwd)
        current->pwd->i_count++;
    if (current->root)
        current->root->i_count++;
    if (current->executable)
        current->executable->i_count++;
    set_tss_desc(gdt+(nr<<1)+FIRST_TSS_ENTRY,&(p->tss));
    set_ldt_desc(gdt+(nr<<1)+FIRST_LDT_ENTRY,&(p->ldt));
    p->state = TASK_RUNNING;    /* do this last, just in case */
//这里有修改
         fprintk(3,"%ld\tN\t%ld\n",last_pid,timep);//进程新建好了 ,这里的timep宏就是 jiffies
    fprintk(3,"%ld\tJ\t%ld\n",last_pid,timep);//进程肯定准备好了
    //printk("%d J %d\n",last_pid,jiffies);
    return last_pid;
}
 
int find_empty_process(void)
{
    int i;
 
    repeat:
        if ((++last_pid)<0) last_pid=1;
        for(i=0 ; i<NR_TASKS ; i++)
            if (task[i] && task[i]->pid == last_pid) goto repeat;
    for(i=1 ; i<NR_TASKS ; i++)
        if (!task[i])
            return i;
    return -EAGAIN;
}

2.sched.c 包含状态:ready, sleep ,run

/*
 *  linux/kernel/sched.c
 *
 *  (C) 1991  Linus Torvalds
 */
 
/*
 * 'sched.c' is the main kernel file. It contains scheduling primitives
 * (sleep_on, wakeup, schedule etc) as well as a number of simple system
 * call functions (type getpid(), which just extracts a field from
 * current-task
 */
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/sys.h>
#include <linux/fdreg.h>
#include <asm/system.h>
#include <asm/io.h>
#include <asm/segment.h>
 
#include <signal.h>
 
#define _S(nr) (1<<((nr)-1))
#define _BLOCKABLE (~(_S(SIGKILL) | _S(SIGSTOP)))
 
void show_task(int nr,struct task_struct * p)
{
    int i,j = 4096-sizeof(struct task_struct);
 
    printk("%d: pid=%d, state=%d, ",nr,p->pid,p->state);
    i=0;
    while (i<j && !((char *)(p+1))[i])
        i++;
    printk("%d (of %d) chars free in kernel stack\n\r",i,j);
}
 
void show_stat(void)
{
    int i;
 
    for (i=0;i<NR_TASKS;i++)
        if (task[i])
            show_task(i,task[i]);
}
 
#define LATCH (1193180/HZ)
 
extern void mem_use(void);
 
extern int timer_interrupt(void);
extern int system_call(void);
 
union task_union {
    struct task_struct task;
    char stack[PAGE_SIZE];
};
 
static union task_union init_task = {INIT_TASK,};
 
long volatile jiffies=0;
long startup_time=0;
struct task_struct *current = &(init_task.task);
struct task_struct *last_task_used_math = NULL;
 
struct task_struct * task[NR_TASKS] = {&(init_task.task), };
 
long user_stack [ PAGE_SIZE>>2 ] ;
 
struct {
    long * a;
    short b;
    } stack_start = { & user_stack [PAGE_SIZE>>2] , 0x10 };
/*
 *  'math_state_restore()' saves the current math information in the
 * old math state array, and gets the new ones from the current task
 */
void math_state_restore()
{
    if (last_task_used_math == current)
        return;
    __asm__("fwait");
    if (last_task_used_math) {
        __asm__("fnsave %0"::"m" (last_task_used_math->tss.i387));
    }
    last_task_used_math=current;
    if (current->used_math) {
        __asm__("frstor %0"::"m" (current->tss.i387));
    } else {
        __asm__("fninit"::);
        current->used_math=1;
    }
}
 
/*
 *  'schedule()' is the scheduler function. This is GOOD CODE! There
 * probably won't be any reason to change this, as it should work well
 * in all circumstances (ie gives IO-bound processes good response etc).
 * The one thing you might take a look at is the signal-handler code here.
 *
 *   NOTE!!  Task 0 is the 'idle' task, which gets called when no other
 * tasks can run. It can not be killed, and it cannot sleep. The 'state'
 * information in task[0] is never used.
 */
void schedule(void)
{
    int i,next,c;
    struct task_struct ** p;
 
/* check alarm, wake up any interruptible tasks that have got a signal */
 
    for(p = &LAST_TASK ; p > &FIRST_TASK ; --p)
        if (*p) {
            if ((*p)->alarm && (*p)->alarm < jiffies) {
                    (*p)->signal |= (1<<(SIGALRM-1));
                    (*p)->alarm = 0;
                }
            if (((*p)->signal & ~(_BLOCKABLE & (*p)->blocked)) && (*p)->state==TASK_INTERRUPTIBLE)
            {
                (*p)->state=TASK_RUNNING;
                //there is a ready
                fprintk(3,"%ld\tJ\t%ld\n",(*p)->pid,jiffies);//这里转换,进入就绪
            }
        }
 
/* this is the scheduler proper: */
 
    while (1) {
        c = -1;
        next = 0;
        i = NR_TASKS;
        p = &task[NR_TASKS];
        while (--i) {
            if (!*--p)
                continue;
            if ((*p)->state == TASK_RUNNING && (*p)->counter > c)
                c = (*p)->counter, next = i;
        }
        if (c) break;
        for(p = &LAST_TASK ; p > &FIRST_TASK ; --p)
            if (*p)
                (*p)->counter = ((*p)->counter >> 1) +
                        (*p)->priority;
    }
    if(current != p) 
    {if(current->state == 0)//这里转换:如果下一个要 RUN 的不是正在 RUN 的,给你补上一条ready,因为你将停下来进入就绪状态,换下一个跑。current指针指向当前正在运行的进程。
        fprintk(3,"%ld\tJ\t%ld\n",current->pid,jiffies);
                  //下面转换:如果下一个要 RUN 的就是当前正在 RUN 的,那就不用打印了,否则打印RUN。
    //there is a running
    fprintk(3,"%ld\tR\t%ld\n",p->pid,jiffies);
    }
    switch_to(next);//切到 p 去运行
}
 
int sys_pause(void)
{
    if(current->state!=TASK_INTERRUPTIBLE){
    current->state = TASK_INTERRUPTIBLE;
    //there is one
    if(current->pid!=0) //这里有一个,可中断的睡眠,就是sleep(wait),守护进程0总在等待,就不用显示它了,闹心。
    fprintk(3,"%ld\tW\t%ld\n",current->pid,jiffies);
    }
    schedule();
    return 0;
}
 
void sleep_on(struct task_struct **p)
{
    struct task_struct *tmp;
 
    if (!p)
        return;
    if (current == &(init_task.task))
        panic("task[0] trying to sleep");
    tmp = *p;
    *p = current;
    current->state = TASK_UNINTERRUPTIBLE;
        //there is one
        if(current->pid!=0) //这里有一个,不可中断的睡眠,就是sleep(wait),守护进程0总在等待,就不用显示它了,闹心。
        fprintk(3,"%ld\tW\t%ld\n",current->pid,jiffies);
    schedule();
    *p=tmp;
    if (tmp ){//&& tmp->state!=0){
        tmp->state=TASK_RUNNING;
        //there is one
        //if(tmp->pid!=current->pid)//这里,temp被唤醒就绪,判断防止重复打印
        fprintk(3,"%ld\tJ\t%ld\n",tmp->pid,jiffies);
    }
}
 
void interruptible_sleep_on(struct task_struct **p)
{
    struct task_struct *tmp;
 
    if (!p)
        return;
    if (current == &(init_task.task))
        panic("task[0] trying to sleep");
    tmp=*p;
    *p=current;
repeat: current->state = TASK_INTERRUPTIBLE;
    //there is one wait
    if(current->pid!=0)//这里和上面同理
    fprintk(3,"%ld\tW\t%ld\n",current->pid,jiffies);
    schedule();
    if (*p && *p != current) {
        
        //这里,从调度返回,意味着p被唤醒
        fprintk(3,"%ld\tJ\t%ld\n",(*p)->pid,jiffies);
            (**p).state=0;//这里就唤醒了p
            goto repeat;
    }
    *p=tmp;
    if (tmp){
        //if(tmp->state!=0){
            tmp->state=0;
        //  if(tmp->pid!=current->pid)//此处与上同理
            fprintk(3,"%ld\tJ\t%ld\n",tmp->pid,jiffies);
        //  }
        }
}
 
void wake_up(struct task_struct **p)
{
    if (p && *p) {
        if((*p)->state!=TASK_RUNNING){
        fprintk(3,"%ld\tJ\t%ld\n",(*p)->pid,jiffies);//这里,同理。
        (**p).state=TASK_RUNNING;
        }
    }
}
 
//下边是软盘驱动什么的,不改。

3,exit.c 包含状态:exit,

/*
 *  linux/kernel/exit.c
 *
 *  (C) 1991  Linus Torvalds
 */
 
#include <errno.h>
#include <signal.h>
#include <sys/wait.h>
 
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/tty.h>
#include <asm/segment.h>
#define VARCHEN 0
#define timep jiffies
int sys_pause(void);
int sys_close(int fd);
 
void release(struct task_struct * p)
{
    int i;
 
    if (!p)
        return;
    for (i=1 ; i<NR_TASKS ; i++)
        if (task[i]==p) {
            task[i]=NULL;
            free_page((long)p);
            schedule();
            return;
        }
    panic("trying to release non-existent task");
}
 
static inline int send_sig(long sig,struct task_struct * p,int priv)
{
    if (!p || sig<1 || sig>32)
        return -EINVAL;
    if (priv || (current->euid==p->euid) || suser())
        p->signal |= (1<<(sig-1));
    else
        return -EPERM;
    return 0;
}
 
static void kill_session(void)
{
    struct task_struct **p = NR_TASKS + task;
    
    while (--p > &FIRST_TASK) {
        if (*p && (*p)->session == current->session)
            (*p)->signal |= 1<<(SIGHUP-1);
    }
}
 
/*
 * XXX need to check permissions needed to send signals to process
 * groups, etc. etc.  kill() permissions semantics are tricky!
 */
int sys_kill(int pid,int sig)
{
    struct task_struct **p = NR_TASKS + task;
    int err, retval = 0;
 
    if (!pid) while (--p > &FIRST_TASK) {
        if (*p && (*p)->pgrp == current->pid) 
            if ((err=send_sig(sig,*p,1)))
                retval = err;
    } else if (pid>0) while (--p > &FIRST_TASK) {
        if (*p && (*p)->pid == pid) 
            if ((err=send_sig(sig,*p,0)))
                retval = err;
    } else if (pid == -1) while (--p > &FIRST_TASK) {
        if ((err = send_sig(sig,*p,0)))
            retval = err;
    } else while (--p > &FIRST_TASK)
        if (*p && (*p)->pgrp == -pid)
            if ((err = send_sig(sig,*p,0)))
                retval = err;
    return retval;
}
 
static void tell_father(int pid)
{
    int i;
 
    if (pid)
        for (i=0;i<NR_TASKS;i++) {
            if (!task[i])
                continue;
            if (task[i]->pid != pid)
                continue;
            task[i]->signal |= (1<<(SIGCHLD-1));
            return;
        }
/* if we don't find any fathers, we just release ourselves */
/* This is not really OK. Must change it to make father 1 */
    printk("BAD BAD - no father found\n\r");
    release(current);
}
 
int do_exit(long code)
{
    int i;
    free_page_tables(get_base(current->ldt[1]),get_limit(0x0f));
    free_page_tables(get_base(current->ldt[2]),get_limit(0x17));
    for (i=0 ; i<NR_TASKS ; i++)
        if (task[i] && task[i]->father == current->pid) {
            task[i]->father = 1;
            if (task[i]->state == TASK_ZOMBIE){
                /* assumption task[1] is always init */
                (void) send_sig(SIGCHLD, task[1], 1);    //发出子进程退出的信号
                //printk("\nPID:%d Zombie %d\n",task[i]->pid,jiffies);
                fprintk(3,"%ld\tE\t%ld\n",task[i]->pid,timep);    //恭喜这位进程获得将死称号
            }
        }
    for (i=0 ; i<NR_OPEN ; i++)
        if (current->filp[i])
            sys_close(i);
    iput(current->pwd);
    current->pwd=NULL;
    iput(current->root);
    current->root=NULL;
    iput(current->executable);
    current->executable=NULL;
    if (current->leader && current->tty >= 0)
        tty_table[current->tty].pgrp = 0;
    if (last_task_used_math == current)
        last_task_used_math = NULL;
    if (current->leader)
        kill_session();
    current->state = TASK_ZOMBIE;   //这里是状态转换,但是因为EXIT这种状态转换很分散,“赋值为将死”可能出现在任何涉及关闭操作的系统调用中,不好找。然而对zombie的检查却都在上方。所以exit的打印就都截在了循环判断中。
    //如解除下面注释,就会让一些程序“死两遍”...
    //fprintk(3,"%d E %d\n",current->pid,jiffies);
    current->exit_code = code;
    tell_father(current->father);
    schedule();
    return (-1);    /* just to suppress warnings */
}
 
int sys_exit(int error_code)
{
    return do_exit((error_code&0xff)<<8);
}
 
int sys_waitpid(pid_t pid,unsigned long * stat_addr, int options)
{
    int flag, code;
    struct task_struct ** p;
 
    verify_area(stat_addr,4);
repeat:
    flag=0;
    for(p = &LAST_TASK ; p > &FIRST_TASK ; --p) {
        if (!*p || *p == current)
            continue;
        if ((*p)->father != current->pid)
            continue;
        if (pid>0) {
            if ((*p)->pid != pid)
                continue;
        } else if (!pid) {
            if ((*p)->pgrp != current->pgrp)
                continue;
        } else if (pid != -1) {
            if ((*p)->pgrp != -pid)
                continue;
        }
        switch ((*p)->state) {
            case TASK_STOPPED:
                if (!(options & WUNTRACED))
                    continue;
                put_fs_long(0x7f,stat_addr);
                return (*p)->pid;
            case TASK_ZOMBIE:    fprintk(3,"%ld\tE\t%ld\n",(*p)->pid,timep);     //这里有一个状态转换,state=zombie
                current->cutime += (*p)->utime;
                current->cstime += (*p)->stime;
                flag = (*p)->pid;
                code = (*p)->exit_code;
                release(*p);
                put_fs_long(code,stat_addr);
                return flag;
            default:
                flag=1;
                continue;
        }
    }
    if (flag) {
        if (options & WNOHANG)
            return 0;
        if(current->state!=TASK_INTERRUPTIBLE){
            current->state=TASK_INTERRUPTIBLE;    //这里变成了等待状态
            if(current->pid!=VARCHEN)              //还是防止0进程捣乱。
            fprintk(3,"%ld\tW\t%ld\n",current->pid,timep);
        }
        schedule();
        if (!(current->signal &= ~(1<<(SIGCHLD-1))))
            goto repeat;
        else
            return -EINTR;
    }
    return -ECHILD;
}

这样,状态的寻找就结束了,目标是尽快完成实验的同学可以不用往下看了。

下面简单说说进程调度时间片的事情。

1,什么是时间片?

我们知道,机器的最小时间单位叫做“时钟周期”,也就是晶振11.88MHZ,是执行一条原子指令的时间。几个时钟周期凑合在一起,就是“机器周期”,用于完成一小套动作。

jiffie滴答类似时钟周期,时间片类似机器周期。

时间片标志着CPU对进程的关注程度,高权限的进程得到的时间片大,包含很多滴答,低权限的就小,滴答数相应就少。

2,修改了又怎样?

进程得到的平均时间片大,则进程间切换就不频繁,当时间片无限制时,就是FIFO先来先服务,你完事儿了下一个。反之就来回折腾。

3,怎么修改啊?

[1]让每个滴答的时间变大,这样时间片的绝对时间就变长了。可以在sched.h头文件修改滴答的定义:#define ….  200  . 200HZ的滴答就是每个滴答5ms。

你把它调成100,就是10ms了。

[2]让时间片包含的滴答数目普遍增多,在schedule()里面有一个级数优先级算法 count = count/2 + priority,你给count再加一个常数,就让每个count变大了。  

Aurora 极光城

讲技术,说人话